
Command Input

Jeffrey Popek
EDG-220-01
Project 3 Team 3
Sprint 5



Table of Contents
Delivery Platform 3
Development Environment 3

Unity 3
Git 4
Google Drive 4
Audacity 5
Photoshop 5
Rider 6

Logical Flow Diagram 7
Game Mechanics and Systems 8

UI 8
Emails 9
Input 9
Movement 10
Obstacles 11

Pipelines 12
Art Pipeline 12

Creating the Art 12
Implementation 12

Audio Pipeline 13
Finding Audio 13
Editing Audio 13
Implementation 13

Design Pipeline 14
Design Stage 14
In Engine 14

Implementation 14

Sprint Updates 16
Sprint 1 - Game Concepts 16
Sprint 2 - Digital Prototype 16
Sprint 3 - Continue Digital Prototype 17
Sprint 4 - Continue Digital Prototype 18
Sprint 5 - Complete Digital Prototype 19



Delivery Platform

Our game, Command Input, will be played on PC with the alternative
controller being a drawing tablet. The game can still be played with
the mouse but the main mechanics are much easier with the drawing
tablet. Our game is aimed at PC players that have access to a
drawing tablet. Another one of our target audiences is mobile game
players since they will have a device that can detect drawn input
built in.

Development Environment

Unity

Our game was developed in the Unity Engine because of our team’s
experience with the engine and also the amount of documentation
available online. Unity allows us to easily build our game and let a
wide range of players play our game. Unity is also easily accessible
for each role in our team. We are using Unity version 2021.3.17f.



Git

Our team will use git for version control because it is supported by
Redmine. Most of the team was somewhat experienced with using
git from previous projects. Applications such as GitKraken or
GitBash will help simplify the version control process for less
experienced git users.

Google Drive

Our team uses Google Drive to store and create documentation
before finalizing it to be submitted to Redmine. Google Drive is
easily accessible to everyone in the team and Champlain gives
students a large amount of storage to use for projects. Google Drive
also allows each team member to easily access and edit any existing
documents for easy collaboration. We can also use redmine’s macros
to show our documents directly in the wiki.



Audacity

Since we do not have a sound designer for this project, we are using
Audacity to edit sounds. Audacity is the best option for our team
because it is easily accessible and free.

Photoshop
Our artist uses Photoshop to create and edit their art. This program
makes creating and implementing art as easy as possible for them.



Rider

Our Programmer used Rider to create scripts for the game. Rider is
our best choice because it is easily accessible, free for college
students with the github student package, and works well with unity.



Logical Flow Diagram



Game Mechanics and Systems

UI

Our game is based around being on a macintosh computer so the UI
will be a big part of the game. The tutorial will be themed around the
macintosh era so pop ups would be emails from your boss. The UI of
the game would be very similar to the menus since the game takes
place on a macintosh computer. The hardest part of creating the
menus and UI would be creating art, implementing it, and making it
all look cohesive.

Risk: Medium



Emails

The emails of our game are connected to the UI but are different
enough to be its own thing. The emails in our game are the tutorials
of the game. In most levels you will receive an email from your boss
giving you instructions. The emails are all themed around our game
being in an office setting. The hardest part of creating the emails
would be creating the UI engine for it and writing the email text.

Risk: Low

Input

Our alternative input is the drawing tablet and drawing symbols on it
is the core mechanic to our game. Getting the drawing tablet to
work is very simple since it is basically plug and play. Getting the
tablet to draw in unity will be a bit harder but not impossible since
its functions are somewhat similar to a mouse. The drawing area for
the game will be the entire screen. The hardest part will be



recognizing symbols and having them each do different actions in
game. Our team is using a unity asset that helps with the symbol
recognition but it will still be a challenge to integrate it into our
game.

Risk: High

Movement

The movement of our game is directly connected to the drawing
input of our game. The movement of our game will only move when
a symbol is recognized. Currently the movement of our character is
simple but will become more complex as we add more mechanics.
The hardest part of this would be connecting the movement to the
symbols.



Risk: Medium

Obstacles

Obstacles will be the way we create challenges in our game. There
will be a variety of obstacles. The main ones we have designed at
the moment are buttons plus moveable objects to move over the
buttons and walls that switch based on the symbol drawn. As we
move along the project timeline we will add more complexity to our
obstacles and increase the difficulty of the game. The hardest part
of this would be designing and programming the obstacles to work
well with our game and fit our theme.



Risk: Medium

Pipelines

Art Pipeline

Creating the Art

Our artist will create their art in a default photoshop template, it can
be scaled down later if necessary.

Implementation

1. Have the art you want to add to the repo ready in the correct
format. (.png)



2. Pull the git repo to make sure your project is up to date. If you
have any git issues stop and contact the programmer unless
you know exactly what the issue is.

3. Copy your file(s) into the project folder Assets/Sprites. There
are a few different folders so pick one that fits the type of art
you are adding (there is Environment, UI, and NPC).

4. Once the art is in you can commit and push to the repo.

Audio Pipeline

Finding Audio

Since we have no sound designer for this project we will find all our
audio online. Anyone can look for audio and put it into the shared
drive folder.

Editing Audio

Once a sound is found we will determine whether it needs to be
edited or not. If so we will bring it into Audacity where we can edit it.

Implementation

1. Have the sound(s) you want to add to the repo ready in the
correct format. (.wav)

2. Pull the git repo to make sure your project is up to date. If you
have any git issues stop and contact the programmer unless
you know exactly what the issue is.

3. Copy your file(s) into the project folder Assets/Sounds. There
are a few different folders so pick one that fits the type of art
you are adding (there is Environment, UI, and NPC).

4. Once the sound(s) are in you can commit and push to the repo.



Design Pipeline

Design Stage

First our designers will come up with an idea and get it written down.
Next they will discuss with the team if the idea is in scope or not. If it
is then they can begin to polish the idea and ask the artists or the
programmer for any additional tools.

In Engine

We want the designers to have an easy time creating our map so we
will be using prefabs. Prefabs allow our designers to drag and drop
premade assets into the scene and still be able to change small
aspects. The prefabs will be created by the programmers with the
input from the designers and the artists.

Implementation

1. When you have an idea you want implemented you must first
run it through the team first to see if it is possibly in scope for
this project.

2. If in scope then the programmers and artists will begin to
create assets. If the idea is out of scope you can scrap it or try
and rework it to be in scope, repeat from step one when
reworking your ideas.

3. Pull the git repo to make sure your project is up to date. If you
have any git issues stop and contact the programmer unless
you know exactly what the issue is.

4. Find out from your programmers and artists what tools and
assets were created to implement your idea.

5. Create your design in the scene and save it as a prefab.
6. Commit and push to repo.



Sprint Updates

Sprint 1 - Game Concepts

Deliverables
● Visual Design Document

○ A Guide for our game’s mechanics.

● Game Loop Flow Chart
○ Explains the flow of our game and how each action would

lead to the next.

● Game Concept Document
○ Explains the concept of our game in detail.

● Art Concept Document
○ Possible art directions for our game to go in.

Goals for next Sprint
● Maintain documentation
● Have a working digital prototype to show the game’s core

mechanics.

Sprint 2 - Digital Prototype

Deliverables
● Game Build

○ A working prototype of our game showing off the core
mechanic.

● Updated Documentation



○ Maintained each of our documents from the previous
sprint.

● Finalized Documentation
○ Finalized documents that do not need to be iterated

anymore.

● Visual Design Guide
○ Explains how our game will play out and what it takes to

get something implemented.

● Art Document
○ Decided on one art direction to take our game in and put

it into a document.

● Testing Plan
○ Team prepares to have our game tested in the GTL with

documentation and a prototype.

Goals for next Sprint
● Maintain documentation.
● Continue working on digital prototype.
● Have our game tested at the GTL.

Sprint 3 - Continue Digital Prototype

Deliverables
● Game Build

○ A working prototype of our game showing off the core
mechanics.



● Updated Documentation
○ Maintained each of our documents from the previous

sprint.

● Finalized Documentation
○ Finalized documents that do not need to be iterated

anymore.

● Implementing Art
○ Artists implement art into game.

● Bring game to GTL
○ Have game tested at GTL and get feedback

Goals for next Sprint
● Maintain documentation.
● Continue working on digital prototype
● Bring game to GTL

Sprint 4 - Continue Digital Prototype

Deliverables
● Game Build

○ A working prototype of our game showing off the core
mechanics.

● Updated Documentation
○ Maintained each of our documents from the previous

sprint.



● Bring game to GTL
○ Have game tested at GTL and get feedback

Goals for next Sprint
● Complete documentation
● Complete digital prototype

Sprint 5 - Complete Digital Prototype

Deliverables
● Game Build

○ A working demo of our game showing off the core
mechanics.

● Completed Documentation
○ Every piece of documentation will be completed and

submitted to the redmine wiki.

● Final Pitch Presentation
○ The team will present our game to the class in a pitch

style presentation.


